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1. Introduction

The Dirac equation is a modern presentation of the relativistic quantum
mechanics of electrons intended to make new mathematical results accessible to a
wider audience. It treats in some depth the relativistic invariance of a quantum
theory, self-adjointness and spectral theory, qualitative features of relativistic
bound and scattering states, and the external field problem in quantum
electrodynamics, without neglecting the interpretational difficulties and limitations
of the theory.

Note that, inverse problems for Dirac system had been investigated in woks
[8, 11- 13, 14,]. It is well known [7] that two spectra uniquely determine the
matrix-valued potential function. In particular, in work [11], eigenfunction
expansions for one dimensional Dirac operators describing the motion of a particle
in quantum mechanics are investigated.

Let L denote a matrix operator

pll(x) p12 (X)

U R O .

where the p, (x) (i,k =1,2) are real functions which are defined and continuous
on the interval [0, z]. Further, let y(x, 1) denotes a two component vector function

y(x,ﬂ){yl(x'l)]- 0

Y, (% 4)
Then the equation
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(Bdi+L—/1ij=O, 3)

X
where A is a parameter, and

0 1 10
B:[—l oj’ 'z[o 1}’ @

is equivalent to a system of two simultaneous first-order ordinary differential
equations

dy
_2+ pll(x) it plZ(X) Y, :;i’yl’
dx (5)
dy, _J
_W‘*‘ p21(x) Yy, + pzz(x)yz =4Y,,

For the case in which
P (X)= P (X)=0, py (X)=V (X)+m, p,, (x)=V (x)-m,
where V (x) is a potential function, and m is the mass of a particle, the system (5)

is known in relativistic quantum theory as a stationary one-dimensional Dirac
system. For the case in which

P1 (X)= Py (x)=0
P (X)=V (x)+m=p(x)
P2, (X) =V (x)=m=r(x),
we obtain the following system called first canonic form of Dirac operator.
Y5 _{/1_ p(X)} y. =0,
y,1+{/1_r(x)} y, =0,
Thus, let us consider the boundary-value problem for the system (5), reducing it to
the canonical form:

(6)

Yy —{A=p(X)}y, =0, y;+{a-r(x)}y,=0, Y
with the following boundary conditions

y,(0)cosa+y,(0)sina =0, (8)

y,(7)cos B+y,(7z)sin g =0. 9
We will assume that the functions p(x) and r(x) are continuous on the interval

[O, 7r].
Let us denote by

y(x,ﬂ){yl(x’i)J (10)

y,(x2)
the solution of the system (7) satisfying the initial conditions
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y,(0,4)=cose, y,(0,4)=-sina. (11)
The function y(x, 1) obviously satisfies the boundary condition (8). Let us

consider the problem (7), (11) for p(x)=r(x)=0. As is not difficult to see, in
this case
y. (X, A)=cos(Ax—a), y,(x A)=sin(Ax—a). (12)
Functions of ¢(x) and B(x) have the expressions

:cos{%i[p(f)ﬂ(f)}df},

(13)
X)ZSin{%!‘[p(T)-Fr(T)]dT}.
For the solution
Y1(X’/1)
A)=
y(x ) [Y2(X’l)]
of the problem (7), (11) we are possessed of the following formulas [8]:
Y. (X, A4)=a(x)cos(Ax—a)+ B(x)sin(Ax—a)+
14
+J' (x,5)cos(As—a)+R(x,5)sin(As—a)}ds 9
Y, (xA)=«a ( )sin(Ax—a)— B(x)cos(Ax—a)+
X 15
+ [{Q(xs)cos(As —a)+H (x,5)sin(As—a)}ds ()
or, inserting the values for ¢r(x) and g(x) from (13),
y, (%, 4)=cos{ +JX'{P X,5)c0s(As—a)+R(x,s)sin(As—a)|ds,
Y, (X A)=sin{& +I x,5)cos(As—a)+H (x,s)sin (As—a){ds,

where
§(x,/1)=/1x—%.(x|;[p(r)+r(r)]dr.

Consider the Dirac system with more general separable boundary conditions
Yy —{A=p(x)}y, =0, y;+{A-r(x)}y, =0,

a,y,(0,4)-ay,y,(0,4)=0, (16)
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a,Y, (7 A)+ayy, (7, 1)=0.

So, let A= u” and Y, (X 4%), y,(x *) denote the solutions of the initial value
problem
yy—{u® =p(x)}y, =0, y;+{u’-r(x)}y,=0,
yl(o’ﬂz):an’ Y2 (Onuz)zalz-
The eigenvalues of (1.16) are the square of the zeroes of the boundary function
B(y)::azlyz(ﬂ,y2)+a22yl<7[,y2). 17)
In the Dirichlet case, this boundary function is an entire function of u« of

order 1 and type & and is square integrable on the real line. Thus, it belongs to the
Paley-Wiener space.

PW,, ={f entirg |f () <Ce™ "™, [ [f (1) du <oo}
R

2. Main results

Let
Vi (X 20) = ¥y (% 1% ) —a (x)cos(ux —a) - B(x)sin (u’x—a) (18)
and
Vo (X 1))=Y, (x,yz)—a(x)sin(,uzx—a)+ﬂ(x)cos(,u2x—a) (19)
In the following, we shall make use of the estimates [10],
|cosu|£e"”‘”‘, lsin u|§coe“m”‘, (20)
where ¢, is some constant (we may take ¢, =1.72 for numerical purposes).
Define the constants

s
¢, = | max

s
0 0<X<rm P(X'S)‘ds ! C2 - rgl?ér R(X’S)‘dsl
- s
=] max |Q(x,s)|ds, ¢, = | max [H (x,s)|ds, 1)
0
o CRCTS B 8 LR

we claim the subsequent results.

Theorem 1. v, (X, 1),V,, (X, 1) € PW, are functions of x for each x and the
following estimates hold:
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Vas (% )] < (e, +°0°2)ex‘ " (22)

[Var (% 22)| < (4 +coc4)ex"m”z‘
Proof: In the first instance

Vs (%, )| < ﬁP(x,s)Hcos(yzs—a)‘ ds +T‘R(x,s)“sin(yzs—a)‘ ds  (23)

Hence,

X

Viy (%, )| < ﬂP(x,s)‘e'm(”zs)ds +COI‘R(X,S)‘G

0

‘ Im(,a Zs)‘

ds
et [l (e
R(x,s)‘)dsj

P(x,s)‘)ds+coﬂ max(

0<x<r

0<x<m

xImyZLH
<e max (
from which we acquire
x| Im 2
Vi (%, )| <e m ‘(cl+cocz)

Therefore, V,; (X, ,u) is entirely of type x order 1 and square integrable on the real

line as a function of g for each X, and satisfy the estimate.
In addition to,

Vo (% 12)| < I'\Q(x, s)Hcos(yzs—a)‘ ds +I\H (x,s)Hsin(,uzs—a)‘ ds  (24)
0 0
and

Vo (% 12)| < I\Q(x, s)\e"m(ﬂzs)‘ds +c0j‘H (X, s)‘e"m(”zs)‘ds
<o me’| U“Q(x s)|ds +COT‘H (x.3), ds)
H (x,s)‘)ds}

Q(x,s)‘)ds+coﬂ max(

0<x<r

X| Im g2 f
| 1ma|
<e max(

0<x<rm

from which we obtain

‘VZI(x,y)‘ <o

| (c3+¢oC,)
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Thus, we have proved the estimates. Therefore, v21(x, ,u) is entirely of type X
order 1 and square integrable on the real line as a function of & for each X.

Theorem 2. V,, (X, ££),V,, (X, ££) € PW, are functions of x for each x and the

following estimates hold:
(<™
, (25)
v (x| < e e

Proof:

Vi (qu) =

O S <

{P(X’S)COS(#ZS—a)+ R(x,s)sin(yzs_a)}ds_

—J{ (x,s)cos(p’s— a)}ds

we obtain at once,

Vi, (%, 1) < E‘R(x,s)”sin(yzs—a)‘ ds

< _I.co IR(x, s)‘e"m(”zs)‘ds

from which we get

x\
‘vlz (x, y)‘s(c 02)e
However,

Vo (X, 1) = E{Q(x, s)cos(u’s—a)+H (x,s)sin(uzs—a)}ds—

X

—_([{Q (x,5)cos (s —a)lds
we obtain

180



E.S. PANAKHOV, M. BABAOGLU: SPECTRAL PROBLEMS FOR REGULAR ...

X

‘vzz(x,y)‘sﬂH (x,s)Hsin(yzs—a)‘ds

< [co|H (x,s)‘e"m(ﬂzs)‘ds

so, estimates are proved. Hence, functions V., (X, z),V,, (X, 1) are entirely of

type X order 1 and square integrable on the real line as a function of x for each
X.

The boundary function (characteristic equation) B( u) is not necessarily in
PW _ as in the Dirichlet case. However, we have the following theorem.
Theorem 3. B(7, 1) =ay,Vy, (7, 1) +ay,V,, (7, 1) € PW, is a function of u
and the following estimate holds:
‘é(ﬂ,y)‘éex‘lm”2‘<05+06) (26)
Proof: Primarily, we have

‘é(x,,u)‘ < ‘a21HV11(X’ ,u)‘ +‘a22HV21 (qu)‘ (27)
from which we attain

X‘ Im,u2 ‘

<[a,(c. +c0c2)ex‘ | +|az|(cs +¢oc. e

<™ ‘(c5+c6)
‘é(ﬁ,y)‘ is easily seen from above mentioned inequality. Hence, the following

theorem is applicable.
Theorem 4. Let f € PW_, then

2 sinz(u—k)
f(u)= f(k)———=, (28)
()= 2 10905
where the series converges uniformly on compact set and also in Lf1 . [10].

Let B, (7, 1) denote the truncation of é(ﬂ,,u)
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B, (rou)= 3 B(m k)7 lK)

) 29
(1K) )

and By, (7, 1) the corresponding approximation to B(7, z1).

3.  Conclusion

In this paper, we examined Dirac system and succeeded in performing our

approach for regular canonical Dirac systems. The approach is based on the well
established technique: Shannon’s sampling theorem. Thus, we obtained satisfactory
results by using the Paley-Wiener spaces.

8.

9.
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Requlyar kanonik Dirak sistemi ii¢iin spektral masalalor
E. S. Ponahov, M. Babaoglu

XULASO

Maqalads requlyar Dirak sistemi iigiin bozi spektral naticolor alinmigdir. Paley-
Viner fozasinda hosllorin qiymatlondirilmasi isbat edilmis, ikinCi sorhad sortinde sorhad
funksiyasinin yuxaridan qiymetlondirilmasi ii¢iin diistur isbat edilmisdir.

Acar sozlar: Dirak sistemi, Paley-Viner fozalari, diskretlosdirmo nozoriyyasi.

CrnexTpaibHble 321241 JJIsl PeryJsIPHbIX KAHOHUYECKHX cucTeM /[mpaka
9. C. IIanaxos, M. bataor.ibl

PE3IOME

B aT0ii cTaThe MOIyYEHBI CIEKTPAIbHBIE PE3YJIbTaThl JUIS PETYIIPHON CHUCTEM
Hupaka. JlokazaHbl OLEHKHM Uil pemieHusi B npocrpaHcTBe [lanes-Bunepa. Jlokazana
(opmyna I BepXHEH OLEHKH IPaHUIHON (QYHKITMH BO BTOPOM KPAaeBOM YCIIOBHH.

KiloueBble ciaoBa: cucrema [lupaka, npoctpanctBa Ilanmes-Bunepa, Teopus
JUCKPETU3ALMH.
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